Interactions between endothelia of the trabecular meshwork and of Schlemm's canal: a new insight into the regulation of aqueous outflow in the eye.
نویسندگان
چکیده
PURPOSE To test the hypothesis that trabecular meshwork endothelial cells (TMEs) regulate aqueous outflow by actively releasing ligands that upon binding to Schlemm's canal endothelial cells (SCEs) increase transendothelial flow, thereby facilitating the egress of aqueous. METHODS We tested our hypothesis by (1) activating the TMEs in vitro using a laser procedure known to increase aqueous outflow in vivo; (2) demonstrating that lasered TMEs become activated at the genome-wide level and synthesize ligands; (3) ascertaining that media conditioned by laser-activated TMEs and ligands therein increase transendothelial flow when added to SCEs; and (4) determining that ligands identified as synthesized by TMEs increase permeability when added to SCEs. RESULTS We find that adding either media conditioned by lasered TMEs or ligands synthesized by TMEs to naïve control SCEs increases permeability. Adding media boiled, diluted, or conditioned by nonlasered TMEs abrogates these permeability effects. Media conditioned by either lasered TMEs or SCEs (TME-cm/SCE-cm), when added to untreated controls of each cell type, induce congruous gene expression and flow effects: TME-cm induces far more differentially expressed genes (829 in control TMEs and 1,120 in control SCEs) than does the SCE-cm (12 in control TMEs and 328 in control SCEs), and TME-cm also increases flow much more (more than 11-fold in control TMEs and more than fourfold in control SCEs) than does the SCE-cm (fivefold in control TMEs and twofold in control SCEs). CONCLUSIONS As postulated, the TMEs release factors that regulate SCE permeability. Derangement of this TME-driven process may play an important role in the pathogenesis of glaucoma. Ligands identified, which regulate permeability, have potential use for glaucoma therapy.
منابع مشابه
How does nonpenetrating glaucoma surgery work? Aqueous outflow resistance and glaucoma surgery.
Histologic, experimental, and theoretical studies of the aqueous outflow pathways point toward the juxtacanalicular region and inner wall of Schlemm's canal as the likely site of aqueous outflow resistance in the normal eye. At least 50% of the aqueous outflow resistance in the normal eye and the bulk of the pathologically increased resistance in the glaucomatous eye resides in the trabecular m...
متن کاملHydraulic pressure stimulates adenosine 3',5'-cyclic monophosphate accumulation in endothelial cells from Schlemm's canal.
PURPOSE Fluid flow across various endothelia results in a variety of intracellular and extracellular adaptations. In the living eye, aqueous humor flows across the surface of endothelial cells on trabecular meshwork (TM) beams and in the juxtacanalicular tissue and through or between a continuous monolayer of endothelial cells that line Schlemm's canal (SC). This study was undertaken to test th...
متن کاملThe role of the actomyosin system in regulating trabecular fluid outflow.
Abnormally high resistance to aqueous humor drainage via the trabecular meshwork and Schlemm's canal is highly correlated with the development of primary open-angle glaucoma. Contractility of the actomyosin system in the trabecular cells or inner wall endothelium of Schlemm's canal is an important factor in the regulation of outflow resistance. Cytoskeletal agents, affecting F-actin integrity o...
متن کاملThe Juxtacanalicular Region of Ocular Trabecular Meshwork: A Tissue with a Unique Extracellular Matrix and Specialized Function.
The trabecular meshwork (TM) is a filter-like tissue located in the anterior segment of the eye. It is composed of a series of fenestrated beams through which aqueous humor flows to exit the anterior chamber via Schlemm's canal. The primary function of the TM is to regulate the flow of aqueous humor in order to establish intraocular pressure (IOP). Dysregulated aqueous humor outflow causes elev...
متن کاملEnhancement of Outflow Facility in the Murine Eye by Targeting Selected Tight-Junctions of Schlemm’s Canal Endothelia
The juxtacanalicular connective tissue of the trabecular meshwork together with inner wall endothelium of Schlemm's canal (SC) provide the bulk of resistance to aqueous outflow from the anterior chamber. Endothelial cells lining SC elaborate tight junctions (TJs), down-regulation of which may widen paracellular spaces between cells, allowing greater fluid outflow. We observed significant increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Transactions of the American Ophthalmological Society
دوره 103 شماره
صفحات -
تاریخ انتشار 2005